
http://phy.hk

AL Physics MC Answers

Year: 1980

Question Number: 19,20,21,22,

1980MC (19)

C. K. Ng

Ray (i) Light transmitted through the two interfaces: no π change

Ray (ii) Light - transmitted through the red interface (no π change), then

- reflected at the blue interface (π change), then

- reflected at the red interface (π change), then

- transmited through the blue interface (no π change).

Overall: no π change

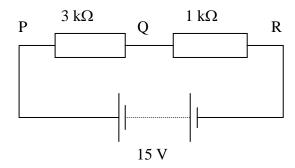
Ray (i) and ray (ii) produces destructive interference when

$$2l = (n + \frac{1}{2})\lambda$$
 op

$$\lambda = (2n + 1)\lambda/4$$

[emerging of very low intensity → destructive interference]

1980MC (20)


Approaching
$$f' = \frac{c}{c - v} f$$
 or $\frac{f'}{f} = \frac{1}{1 - \frac{v}{c}}$

Solving,
$$\frac{v}{c} = 1 - \frac{f}{f'} = 1 - \frac{99}{110} = 0.1$$

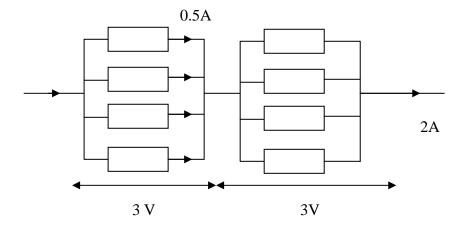
http://phy.hk C. K. Ng

Leaving
$$f'' = \frac{c}{c+v} f = \frac{1}{1+\frac{v}{c}} f = \frac{99}{1+0.1} = 90 \text{ Hz}$$
 (the lowest frequency)

1980MC (21)

The voltmeter reads 3 V when it is connected across QR, so the p.d. across PQ is 15 - 3 = 12 V. The current in the circuit is 12/3000 = 0.004 A.

The p.d. across QR is 3 V, the current passing through the 1 k Ω resistor is 3/1000= 0.003 A.


The current passing through the voltmeter is 0.004-0.003 = 0.001 A.

The p.d. across the voltmeter is also 3 V, so its internal resistance = $3/0.001 = 3 \text{ k}\Omega$.

1980MC (22)

Each bulb is fully lit when the voltage is 3 V and the current is 1.5W/3V = 0.5 A.

The total p.d. is 6V (two identical circuits in series, each takes 3 V) and the total current is 2 A (four in parallel, each takes 0.5 A). Therefore, eight bulbs are used

