http://phy.hk C. K. Ng

AL Physics MC Answers

Year:1981

Question Number: 6, 15,21,23,24,

1981MC(6)

The gas expands isothermally \rightarrow the temperature does not change

PV = nRT

P = nrT/V

Work done
$$= \int_{V_1}^{V_2} P dV$$

$$= \int_{V_1}^{V_2} \frac{nRT}{V} dV$$

$$= nRT \int_{V_1}^{V_2} \frac{1}{V} dV$$

$$= nRT \ln V \Big|_{V_1}^{V_2}$$

$$= nRT (\ln V_2 - \ln V_1)$$

1981MC (15)

Magnetic force on a current F = BIL

Earth's field is unchanged, so F is doubled when I is doubled.

Magnetic force per unit length between two parallel current $\frac{\mu_o I_1 I_2}{2\pi r}$

Both I_1 and I_2 are doubled, so the force is 4 times larger.

The magnetic forces are vectors, so the sum is a vector sum.

1981 MC (21)

Magnetic field inside a long solenoid B = $\frac{\mu_o NI}{l}$.

As an inductor, an emf will be induced across its ends when the current I changes with time

$$\varepsilon = -\frac{d\Phi}{dt} = -\frac{d}{dt} \left(\frac{\mu_o N^2 AI}{l} \right) = -\frac{\mu_o N^2 A}{l} \frac{dI}{dt}$$

Compared with $\varepsilon = -L\frac{dI}{dt}$, the inductance of a long solenoid is identified to be

http://phy.hk C. K. Ng

$$L = \frac{\mu_o N^2 A}{l} \qquad \dots (1)$$

When a current passing through an inductor, the magnetic energy stored in it is

$$E = \frac{1}{2}LI^2 \dots (2)$$

Plug (1) into (2), we get

$$E = \frac{\mu_o N^2 A I^2}{2l}$$

1981MC (23)

- 1. Magnetic North pole = geographic South pole
- 2. earth's magnetic field runs from geographic S to geographic N
- 3. In the above diagram, Earth's b field points downwards.
- 4. The coil and the resultant magnetic field are

http://phy.hk

5. Needle of the compass will align with the resultant magnetic field

6. The magnitude of the magnetic field at the center of a flat coil $B_C = \frac{\mu_0 NI}{2r}$, where r is the radius of the coil. Referring to the above diagram,

$$\tan \theta = \frac{B_C}{B_h} = \frac{\mu_0 NI}{2rB_h}$$

1981MC (24)

The E-field between the plate is uniform and equal to $\ensuremath{V/s}$.

Electric force acting on an electron = eE = eV/s

Acceleration of the electron = F/m = eV/m

$$s = \frac{1}{2}at^{2}$$
, so $t = \sqrt{\frac{2s}{a}} = \sqrt{\frac{2s}{(\frac{eV}{ms})}} = \sqrt{\frac{2ms^{2}}{eV}}$