http://phy.hk C. K. Ng

AL Physics MC Answers

Year:1982

Question Number: 17,25,26,

1982MC(17)

Principal maxima $d\sin\theta = m\lambda$

Slit separation $d = 10^{-2}/5000 = 2 \times 10^{-6} \text{ m} = 2000 \text{ nm}$

m	0	1	2	3	4
Yellow	0	17.5 ⁰	36.9^{0}	64.2^{0}	not exist
Blue	0	11.5^{0}	23.6^{0}	36.9^{0}	53.1 ⁰

- (A) All colors overlap at the central, so the color formed there is white.
- (B) m = 1, blue is closer to the central.
- (C) Both are situated at 36.9° .
- (D) Yes, it is $\sin^{-1}(2 \times 600/2000) = \sin^{-1}(0.6)$
- (E) No, the fourth order of blue light exits.

1982MC(25)

Induced emf = $-\frac{dNBA}{dt}$ {Note: A is the area encircling the B-filed}

 L_1 and L_2 are ONE-loop wires, so N = 1,

 L_1 is a loop just inside the solenoid and L_2 is a loop just outside the solenoid, so both use the same A All things are the same, so the e.m.f. induced in L_2 is also 1.2 V

Q: If area of $L_2 >$ area of S > area of L_1 , what area should be used in calculating ϵ ?

A: ϵ in L₂: area of S is used;

 ε in L_1 : area of L_1 is used. (Why?)

http://phy.hk C. K. Ng

1982MC(26)

Square of the voltage

The period is 3 s. Mean of $V^2 = 2 \times 64/3 = 128/3$ (same area under the red line and the blue line)

Square root of mean of $V^2 = \sqrt{\frac{128}{3}} = 8\sqrt{\frac{2}{3}}$

RMS voltage = equivalent steady d.c voltage