http://phy.hk C. K. Ng AL Physics MC Answers Year:1982 Question Number: 17,25,26, 1982MC(17) Principal maxima $d\sin\theta = m\lambda$ Slit separation $d = 10^{-2}/5000 = 2 \times 10^{-6} \text{ m} = 2000 \text{ nm}$ | m | 0 | 1 | 2 | 3 | 4 | |--------|---|-------------------|------------|------------|-------------------| | Yellow | 0 | 17.5 ⁰ | 36.9^{0} | 64.2^{0} | not exist | | Blue | 0 | 11.5^{0} | 23.6^{0} | 36.9^{0} | 53.1 ⁰ | - (A) All colors overlap at the central, so the color formed there is white. - (B) m = 1, blue is closer to the central. - (C) Both are situated at 36.9° . - (D) Yes, it is $\sin^{-1}(2 \times 600/2000) = \sin^{-1}(0.6)$ - (E) No, the fourth order of blue light exits. 1982MC(25) Induced emf = $-\frac{dNBA}{dt}$ {Note: A is the area encircling the B-filed} L_1 and L_2 are ONE-loop wires, so N = 1, L_1 is a loop just inside the solenoid and L_2 is a loop just outside the solenoid, so both use the same A All things are the same, so the e.m.f. induced in L_2 is also 1.2 V Q: If area of $L_2 >$ area of S > area of L_1 , what area should be used in calculating ϵ ? A: ϵ in L₂: area of S is used; ε in L_1 : area of L_1 is used. (Why?) http://phy.hk C. K. Ng ## 1982MC(26) Square of the voltage The period is 3 s. Mean of $V^2 = 2 \times 64/3 = 128/3$ (same area under the red line and the blue line) Square root of mean of $V^2 = \sqrt{\frac{128}{3}} = 8\sqrt{\frac{2}{3}}$ RMS voltage = equivalent steady d.c voltage