http://phy.hk C. K. Ng

AL Physics MC Answers

Year:1994

Question Number: :4,5,10,16,22,27,37,38,39

1994MC(4)

Impulse = change of momentum

The two momenta are moving in different directions, so we need to do a vectorial subtraction.

Impulse =
$$0.5\sqrt{20^2 + 30^2} = 18 \text{ kg m s}^{-1}$$

1994MC(5)

To execute a vertical circular motion, at the top, the centripetal force required is provided by the weight $mv^2/R = mg$ (1)

$$v = \sqrt{gR}$$

Let v' be the speed at the bottom.

By conservation of energy, $mv^{2}/2 = mv^{2}/2 + mg(2R)$ (2)

From (1) and (2), $v' = \sqrt{5gR}$

1994MC(10)

Page 1

http://phy.hk C. K. Ng

- (1) Equal mass, so (a) has a larger MI.
- (2) Period is proportional to \sqrt{I} , so (a) has a longer period.
- (3) They are released at the same height. KE at the lowest point = loss in gravitational PE = mass x g x distance from axis of rotation to center of mass. Their centers of mass are both situated at their centers.

Same PE loss, so same KE.

1994MC(16)

Beat frequency = $f_1 - f_2$

From the information, we know

$$f_X - f_Y = 3$$
 or $f_Y - f_X = 3$ (we do not know which one is higher)

$$f_X - f_Z = 1$$
 or $f_Z - f_X = 1$

- (1) Not sure although it is possible
- (2) Not sure although it is possible
- (3) X is the highest frequency so only f_X f_Y = 3 and f_X f_Z = 1 are possible. The order is $f_X > f_Y > f_Z$.

1994MC (22)

Young's modulus $E = \frac{Fl}{Ae}$, so the applied force $F = \frac{EA}{l}e$. Compare with Hooke's law, we identify $k = \frac{EA}{l}$.

A wire is cut into two and arranged side by side. Effectively, $l \to \frac{l}{2}$ and $A \to 2A$, so k is four times larger.

C. K. Ng

To put the four charges together, a procedure like this is taken

- (1) At the beginning, there is no charge, so no energy is needed to put A to the top-left corner.
- (2) At the presence of A, B is brought to the top-right corner, energy required = q_B (potential due to A) = $1((\frac{1}{4\pi\epsilon_0 1}) = \frac{1}{4\pi\epsilon_0})$
- (3) At the presence of A and B, C is brought to the bottom-left corner, energy required = q_C (potential due to A and B) = $1(\frac{1}{4\pi\varepsilon_o} + \frac{1}{4\pi\varepsilon_o(\sqrt{2})})$
- (4) At the presence of A, B and C, D is brought to the bottom-right corner, energy required = q_D (potential due to A, B and C) = $1(\frac{2}{4\pi\varepsilon_o} + \frac{1}{4\pi\varepsilon_o(\sqrt{2})})$

Total energy stored in the system = sum of the above all energies.

$$= \frac{4}{4\pi\varepsilon_0} + \frac{2}{4\pi\varepsilon_0\sqrt{2}} = \frac{1}{4\pi\varepsilon_0}(4+\sqrt{2})$$

In general, if there are charge $q_1, q_2, q_3, \dots, q_n$ and their separation are $r_{12}, r_{13}, r_{23}, \dots$, then the total energy stored in them is

$$\frac{1}{4\pi\varepsilon_0}(\frac{q_1q_2}{r_{12}}+\frac{q_1q_3}{r_{13}}+\dots\dots+\frac{q_1q_3}{r_{13}}+\dots\dots)$$

Any two of them "encounter" once only.

1994MC(37)

The discrete points will match the solid line when each f is decreased by a fixed amount or V is increased by a fixed amount.

$$hf - \phi = eV$$

- A. The intensity does not affect the stopping potential
- B. "A fixed zero error" \rightarrow each data differs the true value by a fixed amount.
- C. "read the wrong scale on his voltmeter so that his readings always double the actual readings" \rightarrow

Actual reading	Wrong data
2 V	4 V
3 V	6 V
4 V	8 V

The wrong data is always larger than the true reading, but the difference is NOT a constant.

- D. "wrong polarity of the d.c. supply"→ the electrons will not be stopped, so no stopping voltage V will be found.
- E. If V is plotted against wavelength, the graph will not be a straight line.

$$\frac{hc}{\lambda} - \Phi = eV$$
 (a straight line must have the form $y = mx + c$)

1994 MC (38)

$$E_n = -\frac{X}{n^2}$$

First excited state (n = 2) to the ground state (n = 1), $hf = E_2 - E_1 = \frac{3}{4}X$.

Drop from n = 3 to n = 2, hf'=
$$E_3 - E_2 = \frac{5}{36}X$$

$$\frac{f'}{f} = \frac{5}{27}$$
 f' = 0.19 f

1994MC(39)

1. The diode is assumed ideal, i.e. resistance of the diode = 0 (perfect conductor) when the diode is forward-biased.

http://phy.hk

resistance of the diode = infinity (perfect insulator) when the diode is backward-biased.

2. When two resistors are connected in series, p.d. is proportional to R.

e.g.

When R = 100000000 Ω,
$$V \approx 12V$$

When
$$R = 0.000000001 \Omega$$
, $V \approx 0V$

3. Referring to the resistor-diode circuit, the diode is forward –biased when X is positive w.r.t. Y (a to b), The resistance of the diode is much smaller than that of the resistor, so

p.d across the diode ≈ 0

When X is negative w.r. t. Y (b to c), the diode is backward-biased, the resistance of the diode is much larger than that of the resistor, so

p.d. across the diode \approx external applying a. c

So, the p.d. across the diode is

C. K. Ng

1994(AS) MC (17)

Power input = $12 \text{ V} \times 0.5 \text{A} = 6 \text{ W}$

Useful power output = $10 \text{ N} \times 0.4 \text{ ms}^{-1} = 4 \text{ W}$

Power loss due to internal resistance of the armature = $I^2 R = 2 W$

$$(0.5)^2 R = 2$$

Therefore, $R = 8 \Omega$