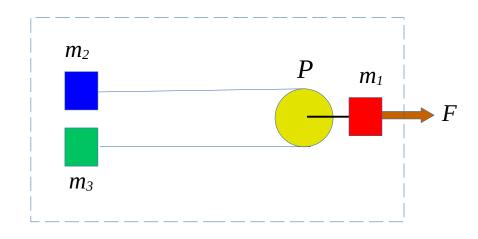
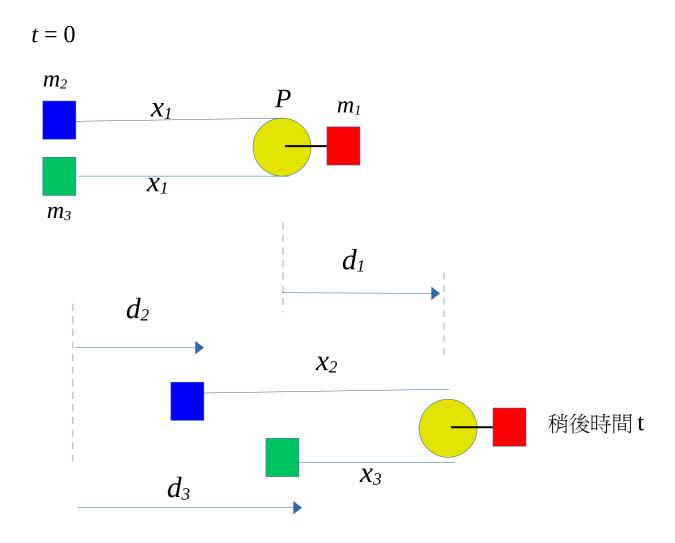

問題:

下圖中滑輪P平滑無摩擦,質量為零。 圖中的繩不可伸長,質量也是零。所有接觸面均是平滑無摩擦。現 m_1 右方受力F作用。


- (i) 若 $m_1=m_2=m_3=m$,求它們的加速度。
- (ii) 若 $m_1=m_2=m$ 及 $m_3=m/2$,求它們的加速度(少許挑戰)。


解答:

(i) 因為滑輪兩邊對稱, m_2 和 m_3 的加速相同。 亦因為繩不可伸長, m_1 的加速度也與 m_2 和 m_3 的相同。

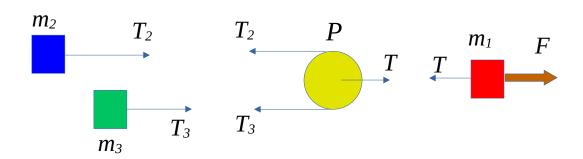
考慮以下系統,
$$F = (m_1 + m_2 + m_3)a = 3ma$$
 $a = F/3m$

(ii) 因為滑輪兩邊不對稱, m_2 和 m_3 的加速不會相同。假設 $m_1 \cdot m_2$ 和 m_3 的加速度分別為 $a_1 \cdot a_2$ 和 a_3 。假設滑輪兩邊的繩長各為 x_1 。

$$x_2 = x_1 + d_1 - d_2$$

 $x_3 = x_1 + d_1 - d_3$

那繞過滑輪,連接 m_2 和 m_3 的繩長固定,所以


$$2x_1 = x_2 + x_3 = (x_1 + d_1 - d_2) + (x_1 + d_1 - d_3)$$

$$2d_1 = d_2 + d_3$$

$$\therefore d \propto a$$
 ($d = ut + at^2/2$,大家初速 u 均是零)

$$\therefore 2a_1 = a_2 + a_3$$
(1)

各方塊受的力:

- ☀ 滑輪的 "F=ma" : $T-T_2-T_3=$ 滑輪質量 × 滑輪加速度
 - · 滑輪質量 = 0

$$T - T_2 - T_3 = 0$$
 (2)

* 滑輪是平滑無摩擦,所以繞過它的繩的張力不會改變,即是

$$T_2 = T_3$$
(3)

由(2)和(3),得到

$$T_2 = T_3 = T/2$$

* $m_1=m_2=m$ 及 $m_3=m/2$ 。 運用 "F=ma" 於各方塊

$$m_1$$
: $F - T = ma_1$ (4)

$$m_2$$
: $T/2 = ma_2$ (5)

$$m_3$$
: $T/2 = (m/2)a_3$ (6)

最後,解式(1),(4)-(6),得

$$a_1 = \frac{3}{7} \frac{F}{m}$$
 $a_2 = \frac{2}{7} \frac{F}{m}$ $a_3 = \frac{4}{7} \frac{F}{m}$

作者:吳老師 (Chiu-King Ng)

https://ngsir.netfirms.com

http://phy. hk

電郵:feedbackWZ@phy.hk 其中WZ 是23 之後的質數