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Let the upward displacement of the rope at the displacement z from left end be ),( tzψ . 

It satisfies the wave equation with damping b: 

0
21

2

2

22

2

=
∂
∂

−
∂
∂

−
∂
∂

tc

b

tcz

ψψψ
          ………..(1) 

The two boundary conditions are 

1. oscillation of the vibrator at the left end:   
tiAet ωψ =),0(     

2. the right end is fixed:                  0),( =taψ   

 

We introduce the conversion 
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Hence, (1) becomes 
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where 
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The boundary conditions of y are 
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The problem now becomes a standard forced oscillation on a string with its two ends fixed. 

Its solutions can be found in many textbooks of intermediate mechanics (e.g.Walter Hauser's 

Introduction to the principles of Mechanics, Addison-Wesley, 1965). 

 

The solution is expressed as a sum of the normal modes, 
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It is a resonance response when nkk =  

 

By putting ),( tzy  back into (2), we get ),( tzψ . 

 

 


